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ARTICLE INFO.                   ABSTRACT 

 

Metallic nanoparticles (MNPs) were synthesized using different methods. Physical and chemical 

methods were the most common for the synthesis of MNPs. Most recently, biosynthesis of MNPs 

has been promoted as the best option which is an eco-friendly, inexpensive and energy-effective 

method. There are several ways to confirm the formation and characterization of MNPs such as UV 

light, FTIR, XRD, DLS, ICPs, TEM, SEM, and zeta potential.  The mechanism of synthesis involves 

extracellular and intracellular routes. The extracted NPs can be applied in a variety of applications, 

including medical, Environmental, industrial, and agricultural applications. 
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1. Introduction 

In the past few years, nanomaterials have gained 

significant attention. For instance, metallic 

nanoparticles are considered a potential technology 

for several applications in different areas, due to their 

uniformity, high stability, biological activity, 

Magnetic properties, catalytic activity, and good 

electrical conductivity (Duan et al. 2018; Xu et al. 

2023). Nanoparticles can be classified into zero, first, 

second, and third dimensions (Khan and Hossain, 

2022). Each dimension expresses a significant form of 

nanomaterials, the zero dimension is what we can call 

a nanoparticle in the range between 1-100nm, also it 

includes quantum dots which are in the range from 1-

10nm for instance (Harish et al. 2018). 

The method of synthesis of nanoparticles can be 

described with two basic techniques, top-down and 

bottom-up (Arole and Munde, 2014). The Top-down 

expresses the synthesis of nanoscale materials by 

cutting the bulk materials into smaller parts till we get 

the nanoparticle, on the other hand, the bottom-up 

technique renders the particles by adding atoms 

together to attain the correct nanoparticles. 

Green synthesis of metallic nanoparticles 

(MNPs) is considered a  bottom-up  technique, in 

which atoms get reduced in a biological process and 

start gathering to form a nanoparticle and then hinder 

the process preventing the overgrowth of these 

particles (Arole and Munde, 2014). The capping agent 

is the name of that compound that can hinder this 

process (Pedroso‐Santana and Fleitas‐Salazar, 2023). 

Plants and microorganisms are regarded as machines 

for green methods of the synthesis of MNPs, as they 

produce large amounts of secondary metabolites such 

as (flavonoids, alkaloids, terpenoids, polyphenolics, 

enzymes, proteins, sugars, and vitamins), sometimes 

primary metabolites which can reduce the precursor 
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into a zero-valent metal form in the nanoscale (Ahmad 

et al. 2019). Moreover, the synthesis of NPs using 

green methods is considered eco-friendly, cost-

effective, and easily available, in which no heat or 

energy is required for the sustainability of this process 

(Shamaila et al. 2016). 

Simply the process of synthesis includes three 

major steps in terms of mechanism, first is the 

reduction of metal ions in the form of precursor into 

the zero valent state, second, is he Nucleation which 

includes the gathering of atoms, finally, capping 

agents start to surround the nuclei and may bond with 

them to guarantee the fixed size of nanoparticles 

(Sabir et al. 2022). 

The NP can be metal alone, metal oxide, or a 

composite (Falcaro et al. 2016). Metals such as Ag, 

Au, Se, and Zn are the most used in applications, on 

the other hand, oxides such as ZnO have several 

applications as well. Magnetic Nanoparticles (MNPs) 

have found diverse applications across various 

domains, demonstrating their versatility and efficacy. 

Within the environmental sector, MNPs have 

exhibited utility in pivotal areas such as water 

treatment (Goutam et al., 2020; Idris and Roy, 2023). 

In medicine, MNPs have demonstrated significant 

potential in multifaceted applications, including drug  

delivery systems, wound healing modalities (Balaure 

et al., 2019; Ullah and Lim, 2022). In the industrial, 

encompasses applications in paints, cosmetics, 

automobiles, semiconductors, packaging materials, 

and catalytic processes (Madkour, 2018). 

In the agricultural domain, MNPs have been 

instrumental in the development of innovative 

solutions, notably contributing to the formulation of 

advanced fertilizers and biochar. (V. Kumar et al. 

2023). Furthermore, Micronutrients such as 

molybdenum (Mo), copper (Cu), iron (Fe), nickel 

(Ni), manganese (Mn), and Zinc (Zn) can used as 

nanofertilizers (Dikshit et al., 2021). 

 2. Methods of synthesis 

 There are two ways to synthesize nanoparticles: 

top-down and bottom-up. The top-down method uses 

a variety of physical procedures, such as evaporation-

condensation, laser ablation, or other techniques, to 

shatter bulk materials into small particles, as shown in 

Fig.1. As opposed to this, the bottom-up approach 

grows NPs by first assembling atoms into nuclei. 

Bottom-up approaches refer to the biological and 

chemical techniques utilized in NP synthesis. Several 

chemical, physical, and biological methods have been 

applied to create nanomaterials with certain sizes and 

forms (Grzelczak et al. 2008). 

 

F                   Figure 1: Synthesis of metallic nanoparticles using 

different   methods. (Salem and Fouda, 2011). 

2.1 Physical and Chemical Techniques for NP 

Synthesis: 

Researchers have developed diverse chemical 

and physical methods to synthesize nanoparticles 

(NPs) in various shapes and sizes for plenty of 

applications (Salem and Fouda, 2011). Techniques 

like photolithography and electrochemical synthesis 

offer precise control over NP morphology (Amani et 

al. 2019). but often at the expense of sustainability and 

safety. The primary limitations of traditional methods 

include a high cost, toxicity Hazardous chemicals that 

pose environmental and health risks, energy 

inefficiency as the processes require significant 

energy consumption, Complexity due to stringent 

control over reaction parameters (pressure, pH, 

temperature) adds difficulties, Waste generation as 

harmful byproducts(Shamaila et al. 2016). 

These shortcomings highlight the urgent need for 

eco-friendly alternatives. Biological and green 

synthesis approaches emerge as promising solutions, 

utilizing naturally derived and non-toxic materials 

and processes. By minimizing environmental impact 

and health risks, green methods pave the way for 

sustainable NPs production (Álvarez-Chimal and 

Arenas-Alatorre 2023). Therefore, Embracing such 

eco-friendly approaches will unlock the full potential 

of NPs while ensuring a safer and cleaner future. 

2.2 Green synthesis of NPs  

Traditional MNPs synthesis methods, while 

offering precise control over morphology, often suffer 

from drawbacks such as high cost, toxicity, and 

environmental concerns. In response, green or 

biological synthesis has emerged as a promising 

alternative ((Álvarez-Chimal and Arenas-Alatorre 

2023). By utilizing naturally derived materials and 

mild reaction conditions, this approach minimizes 

these limitations and promotes sustainability 

(Malhotra and Alghuthaymi 2022).  
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Biomass filtrates obtained from diverse 

biological sources, including bacteria, fungi, 

actinomycetes, and plant extracts, have been 

successfully employed for green synthesis. Diverse 

metal NPs, ranging from silver and gold to copper and 

magnesium, have been produced using this approach 

(Gade et al. 2014). Moreover, a plethora of reports 

demonstrate the biofabrication of nanoparticles like 

silver, gold alloys, tellurium, platinum, and quantum 

dots utilizing various microorganisms (Fouda et al., 

2018; Mohamed et al., 2019; Narayanan and 

Sakthivel, 2010; Saad et al., 2018). Recent 

advancements have expanded the range of organisms 

employed for green synthesis. 

Green synthesis operates through a bottom-up 

approach, where biomolecules like enzymes, proteins, 

and sugars present in the biomass filtrate facilitate the 

oxidation/reduction of metal ions into nanoparticles 

(Prabhu and Poulose, 2012). However, a 

comprehensive understanding of the precise 

mechanisms employed by different microorganisms 

remains elusive. Each microbial species likely utilizes 

multiple pathways to interact with metal ions, and the 

resulting size, shape, and morphology of the 

nanoparticles are further influenced by biochemical 

processing, environmental factors like temperature 

and pH, and the specific microorganism employed 

(Makarov et al., 2014).Despite its advantages, several 

challenges impede the widespread adoption of green 

synthesis such as optimizing the synthesis process for 

precise control over nanoparticle size and shape, as 

these features directly impact their biological 

activities. Moreover, Deciphering the specific roles of 

individual biomass components requires detailed 

chemical analysis, posing another analytical 

challenge, in addition, Scaling up green NP 

production to commercially viable levels requires 

further research and development (Lu and Ozcan 

n.d.). Finally, Elucidating the precise mechanisms of 

bio fabrication is crucial for optimizing and advancing 

technology (Noor Javed et al. n.d.). 

Furthermore, bridging the gap between basic 

science, chemical engineering, and industrial 

production is essential for the successful transition of 

green nanomaterials to commercial applications. 

Overall, while challenges remain, green synthesis 

exhibits great potential for sustainable and eco-

friendly NP production. Continued research and 

development efforts hold the key to overcoming these 

hurdles and unlocking the full potential of this 

exciting field (Noor Javed et al. n.d.). 

2.3 Bacterial-mediated NPs  

Green synthesis of nanoparticles (NPs) using 

bacteria has emerged as a promising alternative to 

traditional methods, offering advantages in terms of 

cost, environmental impact, and ease of production. 

Among various biological agents, bacteria stand out 

due to their: Favourable growth conditions, requiring 

minimal resource investment, and being readily 

manipulated for process optimization. Facile 

purification, simplifying downstream processing, and 

minimizing contamination. High yield, Enabling 

efficient NP production through rapid bacterial 

growth. These attributes have earned bacteria the title 

of "factories of nanomaterials" and made them the 

preferred platform for bio-fabrication 

(Tsekhmistrenko et al. 2020). 

Bacteria display versatility in NP synthesis, 

demonstrated by the successful production of silver 

nanoparticles (Ag-NPs) with controllable size ranges 

by diverse species like Bacillus thuringiensis, 

Bacillus licheniformis, and Klebsiella pneumonia. 

Moreover, their ability to synthesize NPs both 

intracellularly and extracellularly offers several 

advantages. Scalability, Easy adaptation to large-

scale production for commercial applications. 

Flexibility, tailoring bacterial strains and growth 

conditions to achieve desired NP properties. Cost-

effectiveness, Simplified purification, and waste 

management due to intrinsic bioremediation 

capabilities (Sriram, Kalishwaralal, and Gurunathan 

2012). 

2.4 Algal-mediated NPs synthesis  

Marine microorganisms, particularly algae, 

have emerged as dual protagonists in environmental 

remediation and nanomaterial synthesis. Their 

remarkable abilities extend beyond heavy metal 

uptake to the biosynthesis of metallic NPs. As an 

illustrative example, Chlorella vulgaris, a green alga, 

has been successfully employed to produce Au-NPs 

through the reduction of tetrachloroaurate ions 

(Luangpipat et al., 2011). Similarly, Fucus 

vesiculosus, a brown alga, demonstrates the 

promising potential for the bio reduction and 

biosorption of Au (III) ions. This eco-friendly 

approach holds significant promise as a sustainable 

alternative for gold recovery from microelectronic 

scrap leachates and dilute hydrometallurgical 

solutions. Furthermore, diatoms, another crucial 

group of algae, offer valuable resources for the 

fabrication of siliceous materials (Kroger et al., 1999). 
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2.5 Synthesis of NPs by fungi and yeast  

Fungi have become prominent players in the field 

of green nanomaterials synthesis, lauded for their 

efficient biofabrication capabilities. Their extensive 

repertoire of metabolic products, encompassing 

proteins and enzymes, empowers them to produce 

diverse nanoparticles (NPs) with remarkable 

efficiency (Fouda et al. 2018). This, coupled with 

their ease of cultivation and manipulation in 

laboratory settings, positions them as valuable 

additions to the arsenal of microorganisms employed 

in nanosynthesis (Spagnoletti et al. 2019). Several 

factors contribute to the widespread adoption of fungi 

for NP synthesis. Firstly, fungi readily secrete 

enzymes and proteins, enabling large-scale enzyme 

production and enhancing NP creation (Chan and 

Don, 2012). Secondly, fungal biomass is cost-

effective and environmentally friendly, aligning with 

the principles of green nanotechnology. As a third 

advantage, Scalability and ease of processing that 

fungal mycelia offer a large surface area, ideal for 

scaling up production and simplifying downstream 

processing, also it can be involved in a continuous 

system that will be suitable for commercial 

production. Finally, Metal tolerance and 

bioaccumulation found in Certain fungal species 

exhibit remarkable tolerance and bioaccumulation 

capabilities for metals, making them effective 

candidates for bioremediation and metal recovery 

(Sastry et al. 2003). 

Beyond these advantages, fungi also exhibit 

notable versatility in NP fabrication: Diverse NP 

structures: Fungi can generate NPs in various 

morphologies, including meso- and nanostructures, 

through enzymatic reduction (intracellular or 

extracellular) and biomimetic mineralization (Durán 

et al. 2005). A broad spectrum of NPs: A plethora of 

fungal species can produce metal NPs like gold and 

silver, with examples such as Phanerochaete 

chrysosporium, Pleurotus sajorcaju, and Coriolus 

versicolor (El Domany et al. 2018; Elamawi, Al-

Harbi, and Hendi 2018). Expanding NP 

repertoire: Research continues to unveil the potential 

of fungi for synthesizing other NPs, including zinc 

oxide, iron oxide, and metal sulfides (Mohamed et al., 

2019). 

This potent bio-fabrication prowess paves the 

way for a new scientific domain: myco-

nanotechnology. This promising field, at the 

intersection of mycology and nanotechnology, 

harnesses the vast fungal diversity to develop novel 

nanomaterials with diverse applications, particularly 

in the field of medicine (Mandal et al., 2006; Mohmed 

et al., 2017). 

3. Characterization 

Metallic nanoparticles can be characterized using 

several techniques, such as UV, TEM, SEM, XRD, 

DLS, Zeta potential. Which they can be classified into 

two major types, structural characterization and 

compositional characterization as shown in Fig. 2. 

Figure 2: Characterization of metallic nanoparticles 

(Ghosh et al. 2021). 

3.1 Fourier transform infrared spectroscopy (FT-IR):  

Imagine a molecular fingerprint scanner. FT-IR 

analyzes the light absorbed by nanoparticles, 

revealing the unique signatures of stabilizing agents, 

through its functional groups (Shukla and Iravani, 

2017). 

3.2 UV-Vis spectrophotometry  

This technique acts as a prism, dissecting the 

colors of light absorbed or scattered by nanoparticles. 

By analyzing the light spectrum, scientists gain 

insights into their size, formation, stability, and 

interactions with their watery surroundings (M. 

Kumar et al., 2023). 

3.3 Scanning electron microscope (SEM)  

Instead of light, SEM utilizes a focused beam of 

electrons to create high-definition portraits of 

nanoparticles. This allows researchers to visualize 
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their shape, size, texture, and distribution, providing a 

detailed picture of their morphology (Kumar et al., 

2018). 

3.4 X-ray diffraction (XRD)  

XRD acts as an X-ray detective, firing beams of 

X-rays at the nanoparticles and analyzing the resulting 

diffraction patterns. This technique reveals the atomic 

arrangement within the material, allowing for the 

determination of crystal structure, calculation of 

nanoparticle size, and confirmation of their presence 

(M. Kumar et al., 2023). 

3.5 Intracranial pressure (ICP) spectrometry  

ICP spectrometry, like a metal detective, 

measures the concentration of metals present in 

solutions before and after their interaction with 

nanoparticles. This technique reveals the amount of 

metal released during these interactions, providing 

insights into their potential environmental and health 

implications (Naghdi et al., 2018). 

3.6 Atomic force microscopy (AFM) 

Imagine a nanoscale tactile sensor. AFM gently 

scans the surface of nanoparticles, measuring their 

shape, size, and surface area with exquisite precision. 

This technique provides valuable insights into the 

physical properties of these tiny entities 

(Sathishkumar et al., 2018). 

3.7 Transmission electron microscope (TEM) 

TEM acts like a magnifying glass for the atomic 

world. By bombarding nanoparticles with a high-

energy electron beam, TEM generates detailed images 

that reveal their internal structure, size, and intricate 

crystal lattice arrangement (Pérez-Beltrán et al., 

2021). 

3.8 Annular dark-field imaging (HAADF) 

This specialized TEM technique sheds light on 

the interactions between nanoparticles and bacteria. 

By analyzing the intensity variations in the dark-field 

image, researchers can visualize the size distribution 

of nanoparticles interacting with different bacterial 

types, providing crucial information about their 

potential biological effects (Pérez-Beltrán et al., 

2021). 

3.9 Zeta potential:  

Zeta potential quantifies the electrostatic 

potential difference between the charged surface of a 

nanoparticle and the bulk surrounding liquid. This 

critical parameter serves as a potent indicator of 

colloidal stability and aggregation behavior of NPs. A 

high absolute zeta potential, be it positive or negative, 

translates to greater electrostatic repulsion between 

particles, effectively preventing aggregation and 

promoting long-term colloidal stability. Zeta potential 

measurements are intricately linked to various factors, 

including surface charge, ionic strength of the 

suspending medium, and its pH. Consequently, 

manipulating these parameters allows for fine-tuning 

of NP stability and behavior for tailored applications 

(Bagherpour et al., 2018). 

3.10 Dynamic light scattering (DLS) 

Used to measure the particle size of dispersing 

colloidal samples, to study the stability of 

formulations, and to detect the presence of 

aggregation or agglomeration (Bagherpour et al., 

2018; Ijaz et al., 2020).   

4. The mechanism of synthesis, and natural 

compounds responsible for the reduction process 

The synthesis of MNPs by microbes primarily 

relies on reduction reactions. Cellular peptides and 

polysaccharides facilitate enzymatic oxidation, 

reduction, sorption, and chelation of metal ions, 

driving MNP formation via both intracellular and 

extracellular pathways as indicated in Fig. 3 

(Bahrulolum et al., 2021). 

The respiration processes of microbes may 

contribute to the synthesis of diverse metal oxides 

(Kim et al. 2018). The movement of electrons from 

reduced organic compounds to oxidized inorganic 

compounds can be enhanced by microbial 

dissimilatory anaerobic respiration, which is 

associated with crystallization and nanoparticle 

formation. There is strong evidence that Shewanella 

can oxidize organic acids as electron donors and make 

reductions for inorganic metals as electron acceptors. 

(Harris et al. 2018; Heidelberg et al. 2002). 

Microorganisms such as bacteria have developed 
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mechanisms for detoxifying the immediate 

environment by converting toxic metal species into 

nanoparticles (Deplanche and Macaskie, 2008; Murray 

et al., 2017). Also, biomolecules secreted by bacteria 

were used as capping as well as stabilizing agents of 

nanoparticle synthesis. The nanoparticle synthesis by 

the microbial process is indicated in Figure 3. Usually, 

nanoparticles are formed by trapping metal ions on the 

surface of or inside microbial cells, then enzymes 

reduce the trapped metal ions to nanoparticles. 

Figure 3: The mechanism of synthesis of metallic 

nanoparticles using microorganisms (Ovais et al. 2018). 

5- Applications 

The flexible properties of metallic nanoparticles 

(MNPs) have ignited a revolution in diverse fields, 

offering promising solutions for a range of challenges. 

Their unique optical, electronic, and catalytic 

capabilities translate into a multitude of applications 

spanning environmental remediation, healthcare 

breakthroughs, industrial innovations, and 

agricultural advancements as shown in Fig. 4 

(Goutam et al., 2020; Idris and Roy, 2023). 

5.1 Environmental applications: 

5.1.1 Water Purification 

MNPs exhibit exceptional adsorption and 

catalytic properties, enabling efficient removal of 

pollutants like heavy metals, organic dyes, and 

pesticides from water bodies (Salem and Fouda, 

2011). Silver and gold NPs, for instance, possess 

potent antimicrobial activity, contributing to water 

disinfection (Goutam et al., 2020; Idris and Roy, 

2023). 

 

Figure 4: Different applications of metallic 

nanoparticles. 

5.1.2 Soil Remediation 

MNPs can immobilize and degrade harmful 

contaminants in soil, including heavy metals, 

persistent organic pollutants, and radioactive 

materials. Iron and titanium dioxide NPs effectively 

catalyze the breakdown of these pollutants, restoring 

soil health (Alazaiza et al., 2021; Javed et al., 2020). 

5.1.3 Air Pollution Control  

MNPs with high surface area and catalytic 

activity can capture and oxidize harmful airborne 

pollutants like NOx and SOx, promoting cleaner air 

and mitigating the adverse effects of air pollution. 

Gold and copper NPs show promise in catalytic 

converters for reducing vehicular emissions 

(Gopinath et al., 2021). 

5.2 Medical applications: 

5.2.1 Antibacterial and Antifungal Activity  

MNPs like silver and copper exhibit intrinsic 

antimicrobial properties, effectively inhibiting the 

growth of bacteria and fungi. These potential holds 

promise for combating antibiotic-resistant pathogens 

and developing topical antimicrobial coatings for 

medical devices (Noor et al., 2020). 
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5.2.2 Anti-inflammatory and Antioxidant 

Functions 

Gold and cerium NPs exhibit potent anti-

inflammatory and antioxidant properties, offering 

therapeutic potential for inflammatory diseases like 

arthritis and neurodegenerative disorders (Wang et al. 

2020). Their ability to scavenge free radicals and 

mitigate oxidative stress makes them promising 

candidates for drug development (Vijayan et al., 

2019). 

5.2.3 Cancer Diagnostics and Therapeutics 

MNPs possess unique optical and targeting 

properties, enabling their use in cancer imaging and 

targeted drug delivery. Gold and iron oxide NPs offer 

high contrast for tumor visualization in imaging 

techniques like MRI and CT scans (Ali et al. 2021). 

Additionally, MNPs can be conjugated with 

anticancer drugs for site-specific delivery, 

maximizing therapeutic efficacy while minimizing 

side effects (Yu et al., 2010). 

5.2.4 Regenerative Medicine 

MNPs are being explored in bone and tissue 

regeneration due to their ability to stimulate cell 

growth and differentiation. Calcium phosphate NPs, 

for example, can mimic the mineral composition of 

bone and promote bone regeneration. Similarly, gold 

and silver NPs can be used to engineer scaffolds for 

tissue regeneration, offering potential for wound 

healing and organ repair (Balaure et al., 2019; Ullah 

and Lim, 2022).  

5.3. Industrial applications: 

5.3.1 Catalysis 

MNPs exhibit superior catalytic activity 

compared to bulk materials, making them ideal for 

diverse industrial processes. Platinum and palladium 

NPs find extensive use in catalytic converters, while 

gold and silver NPs catalyze various chemical 

reactions in the chemical and pharmaceutical 

industries (Honarmand et al., 2019; Naik et al., 2021). 

5.3.2 Sensors and Optical Devices 

MNPs exhibit unique optical and electronic 

properties, enabling their use in highly sensitive 

sensors for detecting environmental pollutants, 

biological agents, and even cancer biomarkers. 

Additionally, their tunable surface plasmon resonance 

properties make them valuable components in optical 

devices like solar cells and light-emitting diodes (Ally 

and Gumbi, 2023). 

5.3.3 Conductive Coatings and Electronics 

MNPs can be used to develop conductive 

coatings for electronic devices, offering improved 

conductivity and corrosion resistance. Silver and gold 

NPs, for instance, can be used in electrodes and 

circuits for miniaturized electronics and flexible 

electronics applications (Lalegül-Ülker and Elçin, 

2021). 

5.4 Agricultural applications: 

5.4.1 Pesticide Delivery and Crop Protection 

MNPs offer a controlled and targeted approach to 

pesticide delivery, reducing environmental impact 

and optimizing pesticide efficacy. Polymers coated 

with MNPs can release pesticides slowly and directly 

onto plant tissues, minimizing off-target effects and 

enhancing pest control (Farooq et al., 2022). 

5.4.2 Nutrient Delivery and Plant Growth 

Promotion 

MNPs can be used to deliver essential nutrients 

like iron and copper directly to plant roots, improving 

nutrient uptake and enhancing plant growth (Zhou et 

al. 2020). Additionally, MNPs are being explored for 

their potential to stimulate plant defence mechanisms 

and improve stress tolerance. 

5.4.3 Biosensors for Soil and Plant Health 

Monitoring 

MNPs can be functionalized to act as biosensors 

for detecting plant diseases, nutrient deficiencies, and 

soil contamination. This real-time monitoring 

capability allows for early intervention and improved 

agricultural management practices (Idris and Roy, 

2023). 

6. Conclusion 

In conclusion, the benefit of synthesized MNPs 

using green methods such as bacteria, fungi, and 

Algae can be ascribed to the fact that it is low in cost, 
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eco-friendly, and safer for human use. Moreover, 

MNPs have introduced themselves as an effective 

application in many challenging topics. From 

environmental cleanup to medical breakthroughs and 

industrial advancements to agricultural innovations, 

MNPs offer unparalleled solutions for a multitude of 

challenges, paving the way for a sustainable and 

prosperous future. 
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